HYPOCHOLESTEROLEMIC AND ANTI-ATHEROSCLEROTIC POTENTIAL OF CURCUMA RANGJUED RHIZOME EXTRACT VIA INHIBITION OF HMG-COA REDUCTASE

Phung Thi Kim Hue1,2, Mai Phuong Thanh3, Phan Anh Thu2, Nguyen Nhat Long2, Nguyen Van Loc4, Le Nhat Minh1,5, Phan Nu Yen Chi6, Nguyen Thi Duong7, Le Dung Sy7, Le Tri Vien1
1 Institute of Health Research and Educational Development in Central Highlands, Gia Lai, Vietnam
2 Hung Vuong High School for the Gifted, Gia Lai, Vietnam
3 VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, Viet Nam
4 Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
5 Foreign Trade University, Hanoi, Vietnam
6 Soka University of America, Life Sciences Concentration, 1 University Drive, Aliso Viejo City, Orange County, California, USA, zip code 92656
7 Thao Nguyen Duong Traditional Family Medicine Clinic, Bac Gia Nghia Ward, Lam Dong, Vietnam

Nội dung chính của bài viết

Tóm tắt

HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase) is the key enzyme in the mevalonate pathway that governs cholesterol biosynthesis. Inhibition of HMG-CoA reductase effectively reduces hepatic cholesterol production. While synthetic statins are widely prescribed for hypercholesterolemia, their adverse effects highlight the need for natural, plant-derived HMG-CoA reductase inhibitors. Certain natural anti-inflammatory compounds, including polyphenols, flavonoids, and plant extracts, have been reported to inhibit HMG-CoA reductase, thereby suppressing cholesterol biosynthesis (Chaudhary et al., 2023).


Curcuma rangjued, commonly known as Scorpion Turmeric (Hue et al., 2024), is traditionally recognized for its potent anti-inflammatory properties, yet it remains underexplored scientifically. Building on prior evidence that the n-hexane fraction of C. rangjued rhizomes exhibits significant anti-inflammatory activity (Hue et al., 2024), we applied a green extraction method to isolate bioactive constituents from fresh rhizomes, designated as GERC7. The inhibitory potential of GERC7 against HMG-CoA reductase was evaluated following the protocol described by Cho et al. (2024).


Gas chromatography–mass spectrometry (GC–MS) analysis revealed that GERC7 primarily contains curcumenol, germacrone, and isocurcumenol, all recognized as potent anti-inflammatory sesquiterpenes (Gushiken et al., 2022). GERC7 demonstrated significant inhibition of HMG-CoA reductase activity, with an IC₅₀ value of 58.12 ± 2.14 µg/mL, showing a statistically significant difference compared to the inhibitor-free control (p < 0.05). These results suggest that C. rangjued represents a promising medicinal resource with potential to reduce endogenous cholesterol synthesis and, consequently, the risk of atherosclerosis. Further in vivo studies are warranted to confirm its therapeutic potential as an alternative approach for managing hypercholesterolemia and related cardiovascular diseases.

Chi tiết bài viết

Tài liệu tham khảo

1.Chaudhary, S. K., Sharma, K. C., Devi, S. I., Kar, A., Bhardwaj, P. K., Sharma, N., ... & Mukherjee, P. K. (2023). Evaluation of anti-HMG-CoA reductase potential and simultaneous determination of phenolic compounds in hydroalcoholic extract of Ficus cunia fruits by RP-HPLC. South African Journal of Botany, 155, 27-34.
2.Hue, P. T. K., Binh, N. Q., Hanh, N. P., Duong, N. T., Ngan, T. T. Q., Ngoc, N. L. B., ... & Vien, L. T. (2024).Taxonomic identification of an additional species, Curcuma rangjued, in the Central Highlands of Vietnam and evaluation of its inhibitory activities against cancer cell lines, Vietnam Journal of Community Medicine, Vol. 65, English version, 2024, pp. 25-30.
3.Hue, P. T. K., Van Loc, T., Duong, N. T., Ngan, T. T. Q., Ngoc, N. L. B., & Vien, L. T. (2024). Effects of glycemic regulation and acetylcholinesterase inhibition of scorpion turmeric (Curcuma rangjued) in Central Highlands, Vietnam, Vietnam Journal of Community Medicine, Vol. 65, English version, pp. 41-46.
4.Baskaran, G., Shukor, M. Y., Salvamani, S., Ahmad, S. A.,Shaharuddin, N. A., & Pattiram, P. D. (2015). HMG‐CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Design, Development and Therapy, 9, 509–517
5.Marahatha, R., Basnet, S., Bhattarai, B. R., Budhathoki, P., Aryal, B., Adhikari, B., Lamichhane, G., Poudel, D. K., & Parajuli, N. (2021). Potential natural inhibitors of xanthine oxidase and HMG‐CoA reductase in cholesterol regulation: In silico analysis. BMC Complementary Medicine and Therapies, 21, 1–11
6.Hiếu, P. T., Lâm, T. Đ., Năm, P. T., Hoàng, V. Đ., Tuyên, N. H., & Hồng, T. T. (2021). Thành phần hóa học và hoạt tính in vitro kháng nấm Colletotrichum spp. gây bệnh thán thư trên cây trồng của dầu nghệ (Curcuma longa L.). Tạp chí Khoa học và Công nghệ Việt Nam, 63(6).
7.Linton, M. F., Yancey, P. G., Davies, S. S., Jerome, W. G., Linton, E. F., Song, W. L., ... & Vickers, K. C. (2019). The role of lipids and lipoproteins in atherosclerosis. Endotext.
8.Marcac, N., Balbino, S., Tonkovic, P., Medved, A. M., Cegledi, E., & Repajic, M. (2023). Hydrodistillation and Steam Distillation of Fennel Seeds Essential Oil: Parameter Optimization and Application of Cryomilling Pretreatment. Processes, 11(8), 2354.
9.Ajoolabady, A., Pratico, D., Lin, L., Mantzoros, C. S., Bahijri, S., Tuomilehto, J., & Ren, J. (2024). Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell death & disease, 15(11), 817.
10.Souza Junior, E. T. D., Siqueira, L. M., Almeida, R. N., Lucas, A. M., Silva, C. G. F. D., Cassel, E., & Vargas, R. M. F. (2020). Comparison of different extraction techniques of Zingiber officinale essential oil. Brazilian Archives of Biology and Technology, 63, e20190213.