18. EVALUATION OF THE EFFECTIVENESS OF GOOGLE SHEETS INTEGRATED WITH CHATGPT IN DETECTING DRUG INTERACTIONS AND CONTRAINDICATIONS IN OUTPATIENT PRESCRIPTIONS AT TRANSPORT HOSPITAL
Main Article Content
Abstract
Objective: To evaluate the effectiveness of the Google Sheets platform integrated with ChatGPT in detecting drug interactions and contraindications in outpatient prescriptions at Transport Hospital.Methods: A quasi-experimental before–after study was conducted from April 4, 2025, to July 4, 2025. The study analyzed 1,476 outpatient prescriptions containing two or more medications and surveyed 50 healthcare professionals using the tool.Results: The tool enabled batch processing of prescriptions, increasing review capacity from 78 prescriptions/hour (manual) to unlimited. The detection rate of contraindicated interactions rose from 0.41% to 0.75%, and prescriptions requiring modification increased 1.67-fold. Survey results from 50 healthcare professionals indicated an average satisfaction score of 4.2/5; 92% rated the tool as useful and 84% expressed willingness to continue its use. Conclusion: The integration of Google Sheets with ChatGPT significantly improved the efficiency and quality of drug interaction screening under resource-limited conditions, with positive user feedback supporting its feasibility and long-term clinical application. Further research should expand the input database and integrate real-time alerts into electronic prescribing systems.
Article Details
Keywords
Drug interactions, contraindications, artificial intelligence, ChatGPT.
References
[2] Johnsgård T, Elenjord R, Holis RV, et al. How much time do emergency department physicians spend on medication-related tasks? A time-and-motion study. BMC Emerg Med. 2024;24:56.
[3] Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT‑4 as an AI chatbot for medicine. N Engl J Med. 2023;388(13):1233–1239. doi:10.1056/NEJMsr2214184.
[4] Bộ Y tế. Danh mục tương tác thuốc chống chỉ định trong thực hành lâm sàng tại các cơ sở khám chữa bệnh, ban hành kèm theo Quyết định số 5948/QĐ-BYT ngày 30/12/2021 của Bộ Y tế, 2021.
[5] Nguyễn Thanh Hải. Đánh giá tương tác thuốc chống chỉ định trong dữ liệu bảo hiểm y tế điện tử tại 3 bệnh viện tỉnh Quảng Ninh bằng phần mềm Navicat. Tạp chí Khoa học Đại học Quốc gia Hà Nội: Khoa học Y Dược. 2021, tập 37, số 1.
[6] Phạm Thanh Tòng. Nghiên cứu tương tác thuốc có ý nghĩa lâm sàng trong đơn thuốc bảo hiểm y tế điều trị ngoại trú tại Bệnh viện Trường Đại học Y Dược Cần Thơ năm 2022. Tạp chí Y học Việt Nam. 2023, tập 350, tr 387.
[7] Dabidian A, Kinny F, Steichert M, Schlottau S, Bartel A, Schwender H, Laeer S. Impact of a Clinical Decision Support System on the Efficiency and Effectiveness of Performing Medication Reviews in Community Pharmacies: A Randomized Controlled Trial. Healthcare (Basel). 2024 Dec 9;12(23):2491. doi: 10.3390/healthcare12232491. PMID: 39685113; PMCID: PMC11641032.
[8] Kung, T. H., Cheatham, M., Medenilla, A., et al. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), e0000198. https://doi.org/10.1371/journal.pdig.0000198
[9] Elhaddad M, Hamam S. AI-driven clinical decision support systems: an ongoing pursuit of potential. Cureus. 2024 Apr 6;16(4):e57728. doi:10.7759/cureus.57728. PMID: 38711724; PMCID: PMC11073764.