5. EVALUATING THE NRF2 INHIBITORY ACTIVITY OF EXTRACTS FROM THE VIETNAMESE MEDICINAL PLANT HELICTERES HIRSUTA USING A ZEBRAFISH MODEL

Nguyen Thanh Vu1, Le Thi Ngoc Tam2,3, Le Nguyen Thien Han2,3, Nguyen Kim Anh2,3, Thai Khac Minh2,3, Le Minh Tri2,3, Nguyen Minh Hien2,3
1 Biotechnology Center of Ho Chi Minh City
2 University of Health Sciences, Vietnam National University at Ho Chi Minh City
3 Vietnam National University at Ho Chi Minh City

Main Article Content

Abstract

Background: Helicteres hirsuta Lour. is a medicinal plant traditionally used to treat liver diseases.


Aim: This study aimed to evaluate the Nrf2 inhibitory activity of the n-hexane extract from H. hirsuta leaves (AX-He) using a zebrafish model.


Method: Wild-type (AB) and Keap1b knockout (keap1bdl40) zebrafish larvae were treated with AX-He at various concentrations. The nrf2dl703 knockout line was used as a negative control for Nrf2 activity. The antioxidant activity of AX-He was assessed by its ability to protect WT larvae against H2O2-induced oxidative stress. The expression of Nrf2 target genes, including gstp1, prdx1, and nrf2a, was analyzed by RT-qPCR.


Results: AX-He suppressed the expression of prdx1 and nrf2a in keap1bdl40 larvae at concentrations of 50 and 75 µg/mL. At 100 µg/mL, AX-He reduced the antioxidant capacity of WT larvae against H2O2 exposure.


Conclusion: To sum up, this study provides evidence that AX-He can inhibit Nrf2, suggesting the potential use of H. hirsuta in treating diseases associated with Nrf2 dysregulation, including cancer.

Article Details

References

[1] Aramouni K, Assaf R, Shaito A, Fardoun M, Al-Asmakh M, Sahebkar A, Eid AH (2023). Biochemical and cellular basis of oxidative stress: Implications for disease onset. Journal of Cellular Physiology, 238(9): 1951-1963.
[2] Sies H, Berndt C, Jones DP (2017). Oxidative Stress. 86(Volume 86, 2017): 715-748.
[3] Kaspar JW, Niture SK, Jaiswal AK (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology and Medicine, 47(9): 1304-1309.
[4] Sun Z, Zhang S, Chan JY, Zhang DD (2007). Keap1 Controls Postinduction Repression of the Nrf2-Mediated Antioxidant Response by Escorting Nuclear Export of Nrf2. Molecular and Cellular Biology, 27(18): 6334-6349.
[5] Nguyen VT, Fuse Y, Tamaoki J, Akiyama S-i, Muratani M, Tamaru Y, Kobayashi M (2016). Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish. Oxidative Medicine and Cellular Longevity, 2016(1): 5720574.
[6] Kim J, Keum Y-S (2016). NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. Oxidative Medicine and Cellular Longevity, 2016(1): 2746457.
[7] van der Wijst MGP, Brown R, Rots MG (2014). Nrf2, the master redox switch: The Achilles' heel of ovarian cancer? Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1846(2): 494-509.
[8] Lam SH, Gong Z (2006). Modeling Liver Cancer Using Zebrafish: A Comparative Oncogenomics Approach. Cell Cycle, 5(6): 573-577.
[9] Tsang B, Zahid H, Ansari R, Lee RC-Y, Partap A, Gerlai R (2017). Breeding Zebrafish: A Review of Different Methods and a Discussion on Standardization. Zebrafish, 14(6): 561-573.
[10] Nguyen VT, Bian L, Tamaoki J, Otsubo S, Muratani M, Kawahara A, Kobayashi M (2020). Generation and characterization of keap1a- and keap1b-knockout zebrafish. Redox Biology, 36: 101667.
[11] Li L, Kobayashi M, Kaneko H, Nakajima-Takagi Y, Nakayama Y, Yamamoto M (2008). Molecular Evolution of Keap1: TWO Keap1 MOLECULES WITH DISTINCTIVE INTERVENING REGION STRUCTURES ARE CONSERVED AMONG FISH*. Journal of Biological Chemistry, 283(6): 3248-3255.
[12] Bian L, Nguyen VT, Tamaoki J, Endo Y, Dong G, Sato A, Kobayashi M (2023). Genetic hyperactivation of Nrf2 causes larval lethality in Keap1a and Keap1b-double-knockout zebrafish. Redox Biology, 62: 102673.
[13] Peeters L, Van der Auwera A, Beirnaert C, Bijttebier S, Laukens K, Pieters L, Hermans N,Foubert K (2020). Compound Characterization and Metabolic Profile Elucidation after In Vitro Gastrointestinal and Hepatic Biotransformation of an Herniaria hirsuta Extract Using Unbiased Dynamic Metabolomic Data Analysis. Metabolites, 10(3): 111.
[14] (2022). Herniaria hirsuta. CABI Compendium.
[15] Nguyen MH, Nguyen NYT, Chen Y-S, Nguyen Le HT, Vo HT, Yen C-H (2024). Unveiling the potential of medicinal herbs as the source for in vitro screening toward the inhibition of Nrf2. Heliyon, 10(19): e38411.
[16] Thanh Nguyen V, Nguyen TTT, Phuong Phi N, Mai Que DN, Thu Hien L, Phuong Hanh LL, Phuong Thao NH, Nguyen XT, Thanh Luu P, Thuy Vy NH, Thi Thuy D (2022). Keap1/Nrf2-independent antioxidative activity of Phyllanthus amarus extract in zebrafish. Vietnam Journal of Biotechnology, 20(4): 653-661.
[17] Nguyen VT, Thao VTM, Hanh LLP, Rol TH, Thao NHP, Nguyen TX, Luu PT, Thuy DT (2024). Exploring the Phytochemical Diversity and Antioxidant Potential of the Vietnamese Smilax glabra Roxb: Insights from UPLCQTOF-MS/MS and Zebrafish Model Studies. Applied Biochemistry and Biotechnology.
[18] Singh A, Venkannagari S, Oh KH, Zhang Y-Q, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, Ma J, Wang A, Xu X, Shahane SA, Xia M, Woo J, Mensah GA, Wang Z, Ferrer M, Gabrielson E, Li Z, Rastinejad F, Shen M, Boxer MB, Biswal S (2016). Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chemical Biology, 11(11): 3214-3225.
[19] Taguchi K, Yamamoto M (2017). The KEAP1– NRF2 System in Cancer. Frontiers in Oncology, 7.
[20] Scalera S, Mazzotta M, Cortile C, Krasniqi E, De Maria R, Cappuzzo F, Ciliberto G, Maugeri-Saccà M (2022). KEAP1-Mutant NSCLC: The Catastrophic Failure of a Cell-Protecting Hub. Journal of Thoracic Oncology, 17(6): 751-757.
[21] Sant KE, Hansen JM, Williams LM, Tran NL, Goldstone JV, Stegeman JJ, Hahn ME, TimmeLaragy A (2017). The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo. Redox Biology, 13: 207-218.
[22] van Dooren I, Foubert K, Bijttebier S, Theunis M, Velichkova S, Claeys M, Pieters L, Exarchou V, Apers S (2016). Saponins and Flavonoids from an Infusion of Herniaria hirsuta. Planta Med, 82(18): 1576-1583.
[23] Kozachok S, Kolodziejczyk-Czepas J, Marchyshyn S, Wojtanowski KK, Zgórka G, Oleszek W (2022). Comparison of Phenolic Metabolites in Purified Extracts of Three Wild-Growing Herniaria L. Species and Their Antioxidant and Anti-Inflammatory Activities In Vitro. Molecules, 27(2): 530.
[24] Wang L, Chen Y, Sternberg P, Cai J (2008). Essential Roles of the PI3 Kinase/Akt Pathway in Regulating Nrf2-Dependent Antioxidant Functions in the RPE. Investigative Ophthalmology & Visual Science, 49(4): 1671-1678.
[25] Liao H, Zhu D, Bai M, Chen H, Yan S, Yu J, Zhu H, Zheng W, Fan G (2020). Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell International, 20(1): 480.
[26] Gjorgieva Ackova D, Maksimova V, Smilkov K, Buttari B, Arese M, Saso L (2023). Alkaloids as Natural NRF2 Inhibitors: Chemoprevention and Cytotoxic Action in Cancer. Pharmaceuticals, 16(6): 850.
[27] He T, Zhou F, Su A, Zhang Y, Xing Z, Mi L, Li Z, Wu W (2023). Brusatol: A potential sensitizing agent for cancer therapy from Brucea javanica. Biomedicine & Pharmacotherapy, 158: 114134.
[28] Xi W, Zhao C, Wu Z, Ye T, Zhao R, Jiang X, Ling S (2024). Brusatol’s anticancer activity and its molecular mechanism: a research update. Journal of Pharmacy and Pharmacology, 76(7): 753-762.
[29] Yu X-q, Shang X-y, Huang X-x, Yao G-d, Song S-j (2020). Brusatol: A potential anti-tumor quassinoid from Brucea javanica. Chinese Herbal Medicines, 12(4): 359-366.
[30] Cloer EW, Goldfarb D, Schrank TP, Weissman BE, Major MB (2019). NRF2 Activation in Cancer: From DNA to Protein. Cancer Research, 79(5): 889-898.